Skip to main content

Instance Segmentation on Jetson

This section demonstrates instance segmentation using Ultralytics YOLO segmentation models on NVIDIA Jetson. Examples include image, video, and real-time camera inference.


1. Enable Optimal Jetson Performance

For best inference speed, enable maximum power and clocks.

Enable MAX Power Mode

sudo nvpmodel -m 2

Enable Jetson Clocks

sudo jetson_clocks

2. Instance Segmentation on Images

Enter Demo Directory

cd ~/ultralytics/ultralytics/yahboom_demo

Run Image Segmentation Script

python3 02.segmentation_image.py

Results are saved to:

~/ultralytics/ultralytics/output/

Sample Code (Image Segmentation)

from ultralytics import YOLO

model = YOLO("yolo11n-seg.pt")
results = model("assets/zidane.jpg")

for r in results:
r.show()
r.save(filename="output/zidane_output.jpg")

3. Instance Segmentation on Video

Run Video Segmentation Script

python3 02.segmentation_video.py

Output video location:

~/ultralytics/ultralytics/output/

Sample Code (Video Segmentation)

import cv2
from ultralytics import YOLO

model = YOLO("yolo11n-seg.pt")
cap = cv2.VideoCapture("videos/people_animals.mp4")

width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))

out = cv2.VideoWriter(
"output/people_animals_output.mp4",
cv2.VideoWriter_fourcc(*"mp4v"),
fps,
(width, height)
)

while cap.isOpened():
ret, frame = cap.read()
if not ret:
break

results = model(frame)
annotated = results[0].plot()
out.write(annotated)

cap.release()
out.release()

4. Real-Time Instance Segmentation

  • USB Camera: OpenCV VideoCapture(0)
  • CSI Camera: GStreamer pipeline (nvarguscamerasrc)

Real-time processing follows the same inference logic as video segmentation.


5. Notes

  • Segmentation models output pixel-level masks
  • Suitable for defect contours and object separation
  • Use Nano segmentation models for real-time inference
  • Export to TensorRT for production deployment

Maintained by HemiHex for Jetson-based advanced vision workflows.